Key ideas, terms & concepts in SEM

Professor Patrick Sturgis
Plan

• Path diagrams
• Exogenous, endogenous variables
• Variance/covariance matrices
• Maximum likelihood estimation
• Parameter constraints
• Nested Models and Model fit
• Model identification
Path diagrams

- An appealing feature of SEM is representation of equations diagrammatically

 e.g. bivariate regression \(Y = bX + e \)
Path Diagram conventions

- Measured latent variable
- Observed / manifest variable
- Error variance / disturbance term
- Covariance / non-directional path
- Regression / directional path
Reading path diagrams

With 3 error variances

Causes/measured by 3 observed variables

A latent variable
Reading path diagrams

2 latent variables, each measured by 3 observed variables

Correlated
Reading path diagrams

2 latent variables, each measured by 3 observed variables

Error/disturbance
Exogenous/Endogenous variables

• **Endogenous (dependent)**
 – caused by variables in the system

• **Exogenous (independent)**
 – caused by variables outside the system

• In SEM a variable can be a predictor and an outcome (a mediating variable)
2 (correlated) exogenous variables
η_1 endogenous, η_2 exogenous
Data for SEM

- In SEM we analyse the variance/covariance matrix (S) of the observed variables, not raw data.
- Some SEMs also analyse means.
- The goal is to summarise S by specifying a simpler underlying structure: the SEM.
- The SEM yields an implied var/covar matrix which can be compared to S.
Variance/Covariance Matrix (S)

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
<th>X6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0.91</td>
<td>-0.37</td>
<td>0.05</td>
<td>0.04</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>x2</td>
<td>-0.37</td>
<td>1.01</td>
<td>0.11</td>
<td>0.03</td>
<td>-0.22</td>
<td>-0.23</td>
</tr>
<tr>
<td>x3</td>
<td>0.05</td>
<td>0.11</td>
<td>0.84</td>
<td>0.29</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>x4</td>
<td>0.04</td>
<td>0.03</td>
<td>0.29</td>
<td>1.13</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>x5</td>
<td>0.34</td>
<td>-0.22</td>
<td>0.14</td>
<td>0.11</td>
<td>1.12</td>
<td>0.34</td>
</tr>
<tr>
<td>x6</td>
<td>0.31</td>
<td>-0.23</td>
<td>0.11</td>
<td>0.06</td>
<td>0.34</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Maximum Likelihood (ML)

• ML estimates model parameters by maximising the Likelihood, L, of sample data

• L is a mathematical function based on joint probability of continuous sample observations

• ML is asymptotically unbiased and efficient, assuming multivariate normal data

• The (log)likelihood of a model can be used to test fit against more/less restrictive baseline
Parameter constraints

- An important part of SEM is fixing or constraining model parameters
- We fix some model parameters to particular values, commonly 0, or 1
- We constrain other model parameters to be equal to other model parameters
- Parameter constraints are important for identification
Nested Models

- Two models, A & B, are said to be ‘nested’ when one is a subset of the other

\[(A = B + \text{parameter restrictions})\]

- Model B:

\[y_i = a + b_1X_1 + b_2X_2 + e_i\]

- Model A:

\[y_i = a + b_1X_1 + b_2X_2 + e_i \text{ (constraint: } b_1 = b_2)\]

- Model C (not nested in B):

\[y_i = a + b_1X_1 + b_2Z_2 + e_i\]
Model Fit

• Based on (log)likelihood of model(s)

• Where model A is nested in model B:
 \[\text{LLA-LLB} = \chi^2, \text{ with df} = \text{dfA-dfB} \]

• Where p of > 0.05, we prefer the more parsimonious model, A

• Where B = observed matrix, there is no difference between observed and implied

• Model ‘fits’!
Model Identification

• An equation needs enough ‘known’ pieces of information to produce unique estimates of ‘unknown’ parameters

\[X + 2Y = 7 \] (unidentified)

\[3 + 2Y = 7 \] (identified) \(y = 2 \)

• In SEM ‘knowns’ are the variances/ covariances/ means of observed variables

• Unknowns are the model parameters to be estimated
Identification Status

• Models can be:
 – Unidentified, knowns < unknowns
 – Just identified, knowns = unknowns
 – Over-identified, knowns > unknowns

• In general, for CFA/SEM we require over-identified models

• Over-identified SEMs yield a likelihood value which can be used to assess model fit
Assessing identification status

- Checking identification status using the counting rule
- Let $s =$ number of observed variables in the model
- number of non-redundant parameters = $\frac{1}{2} s (s + 1)$
- $t =$ number of parameters to be estimated

$t > \frac{1}{2} s (s + 1) \quad \text{model is unidentified}$

$t < \frac{1}{2} s (s + 1) \quad \text{model is over-identified}$
Example 1 - identification

Non-redundant parameters

\[\frac{1}{2} s (s + 1) = 6 \]

parameters to be estimated

\[3 \times \text{error variance} + 2 \times \text{factor loading} + 1 \times \text{latent variance} = 6 \]

6 - 6 = 0 degrees of freedom, model is just-identified
Controlling Identification

• We can make an under/just identified model over-identified by:
 – Adding more knowns
 – Removing unknowns

• Including more observed variables can add more knowns

• Parameter constraints remove unknowns

• Constraint $b_1 = b_2$ removes one unknown from the model (gain 1 df)
Example 2 – add knowns

Non-redundant parameters

\[\frac{1}{s(s+1)} = 10 \]

parameters to be estimated

4 * error variance +
3 * factor loading +
1 * latent variance = 8

10 - 8 = 2 degrees of freedom, model is over-identified
Example 3 – remove unknowns

Constrain factor loadings = 1

Non-redundant parameters

\[\frac{1}{2s(s+1)} = 6 \]

parameters to be estimated

3 * error variance +
0 * factor loading +
1 * latent variance = 4

6 - 4 = 2 degrees of freedom, model is over-identified
Summary

• SEM requires understanding of some ideas which are unfamiliar for many substantive researchers:
 – Path diagrams
 – Analysing variance/covariance matrix
 – ML estimation
 – global ‘test’ of model fit
 – Nested models
 – Identification
 – Parameter constraints/restrictions
For more information contact
ncrm.ac.uk