Confirmatory Factor Analysis

Professor Patrick Sturgis
Plan

• Measuring concepts using latent variables
• Exploratory Factor Analysis (EFA)
• Confirmatory Factor Analysis (CFA)
• Fixing the scale of latent variables
• Mean structures
• Formative indicators
• Item parcelling
• Higher-order factors
2 step modeling

• ‘SEM is path analysis with latent variables’

• This as a distinction between:
 – Measurement of constructs
 – Relationships between these constructs

• First step: measure constructs

• Second step: estimate how constructs are related to one another
Step 1: measurement

- All measurements are made with error (random and/or systematic)

- We want to isolate ‘true score’ component of measured variables: \(X = t + e \)

- How can we do this?

- Sum items (random error cancels)

- Estimate latent variable model
Exploratory Factor Analysis

• Also called ‘unrestricted’ factor analysis

• Finds factor loadings which best reproduce correlations between observed variables

• n of factors = n of observed variables

• All variables related to all factors
Exploratory Factor Analysis

• Retain <n factors which ‘explain’ satisfactory amount of observed variance

• ‘Meaning’ of factors determined by pattern of loadings

• No unique solution where >1 factor, rotation used to clarify what each factor measures
Example: Intelligence

9 knowledge quiz items

<table>
<thead>
<tr>
<th>Observed Items</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 1</td>
<td>.89</td>
<td>.12</td>
<td>.03</td>
</tr>
<tr>
<td>Math 2</td>
<td>.73</td>
<td>-.13</td>
<td>.03</td>
</tr>
<tr>
<td>Math 3</td>
<td>.75</td>
<td>.09</td>
<td>-.11</td>
</tr>
<tr>
<td>Visual-Spatial 1</td>
<td>-.03</td>
<td>.68</td>
<td>.07</td>
</tr>
<tr>
<td>Visual-Spatial 2</td>
<td>.13</td>
<td>.74</td>
<td>-.12</td>
</tr>
<tr>
<td>Visual-Spatial 3</td>
<td>-.08</td>
<td>.91</td>
<td>.05</td>
</tr>
<tr>
<td>Verbal 1</td>
<td>.23</td>
<td>.17</td>
<td>.88</td>
</tr>
<tr>
<td>Verbal 2</td>
<td>.18</td>
<td>.03</td>
<td>.73</td>
</tr>
<tr>
<td>Verbal 3</td>
<td>-.03</td>
<td>-.11</td>
<td>.70</td>
</tr>
</tbody>
</table>

...Factor 9
Example: Intelligence

9 knowledge quiz items

<table>
<thead>
<tr>
<th>Observed Items</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 1</td>
<td>.89</td>
<td>.12</td>
<td>.03</td>
</tr>
<tr>
<td>Math 2</td>
<td>.73</td>
<td>-.13</td>
<td>.03</td>
</tr>
<tr>
<td>Math 3</td>
<td>.75</td>
<td>.09</td>
<td>-.11</td>
</tr>
<tr>
<td>Visual-Spatial 1</td>
<td>-.03</td>
<td>.68</td>
<td>.07</td>
</tr>
<tr>
<td>Visual-Spatial 2</td>
<td>.13</td>
<td>.74</td>
<td>-.12</td>
</tr>
<tr>
<td>Visual-Spatial 3</td>
<td>-.08</td>
<td>.91</td>
<td>.05</td>
</tr>
<tr>
<td>Verbal 1</td>
<td>.23</td>
<td>.17</td>
<td>.88</td>
</tr>
<tr>
<td>Verbal 2</td>
<td>.18</td>
<td>.03</td>
<td>.73</td>
</tr>
<tr>
<td>Verbal 3</td>
<td>-.03</td>
<td>-.11</td>
<td>.70</td>
</tr>
</tbody>
</table>
Example: Intelligence

9 knowledge quiz items

<table>
<thead>
<tr>
<th>Observed Items</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 1</td>
<td>.89</td>
<td>.12</td>
<td>.03</td>
</tr>
<tr>
<td>Math 2</td>
<td>.73</td>
<td>-.13</td>
<td>.03</td>
</tr>
<tr>
<td>Math 3</td>
<td>.75</td>
<td>.09</td>
<td>-.11</td>
</tr>
<tr>
<td>Visual-Spatial 1</td>
<td>-.03</td>
<td>.68</td>
<td>.07</td>
</tr>
<tr>
<td>Visual-Spatial 2</td>
<td>.13</td>
<td>.74</td>
<td>-.12</td>
</tr>
<tr>
<td>Visual-Spatial 3</td>
<td>-.08</td>
<td>.91</td>
<td>.05</td>
</tr>
<tr>
<td>Verbal 1</td>
<td>.23</td>
<td>.17</td>
<td>.88</td>
</tr>
<tr>
<td>Verbal 2</td>
<td>.18</td>
<td>.03</td>
<td>.73</td>
</tr>
<tr>
<td>Verbal 3</td>
<td>-.03</td>
<td>-.11</td>
<td>.70</td>
</tr>
</tbody>
</table>
Example: Intelligence

9 knowledge quiz items

<table>
<thead>
<tr>
<th>Observed Items</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 1</td>
<td>.89</td>
<td>.12</td>
<td>.03</td>
</tr>
<tr>
<td>Math 2</td>
<td>.73</td>
<td>-.13</td>
<td>.03</td>
</tr>
<tr>
<td>Math 3</td>
<td>.75</td>
<td>.09</td>
<td>-.11</td>
</tr>
<tr>
<td>Visual-Spatial 1</td>
<td>-.03</td>
<td>.68</td>
<td>.07</td>
</tr>
<tr>
<td>Visual-Spatial 2</td>
<td>.13</td>
<td>.74</td>
<td>-.12</td>
</tr>
<tr>
<td>Visual-Spatial 3</td>
<td>-.08</td>
<td>.91</td>
<td>.05</td>
</tr>
<tr>
<td>Verbal 1</td>
<td>.23</td>
<td>.17</td>
<td>.88</td>
</tr>
<tr>
<td>Verbal 2</td>
<td>.18</td>
<td>.03</td>
<td>.73</td>
</tr>
<tr>
<td>Verbal 3</td>
<td>-.03</td>
<td>-.11</td>
<td>.70</td>
</tr>
</tbody>
</table>

...Factor 9
Limitations of EFA

• Inductive, atheoretical (Data->Theory)

• Subjective judgement & heuristic rules

• We usually have a theory about how indicators are related to particular latent variables (Theory-> Data)

• Be explicit and test this measurement theory against sample data
Confirmatory Factor Analysis (CFA)

- Also ‘the restricted factor model’
- Specify the measurement model before looking at the data (the ‘no peeking’ rule!)
- Which indicators measure which factors?
- Which indicators are unrelated to which factors?
- Are the factors correlated or uncorrelated?
Two Factor, Six Item EFA
Two Factor, Six Item CFA
Parameter Constraints

• CFA applies constraints to parameters (hence ‘restricted’ factor model)

• Factor loadings are fixed to zero for indicators that do not measure the factor

• Measurement theory is expressed in the constraints that we place on the model

• Fixing parameters over-identifies the model, can test the fit of our a priori model
Scales of latent variables

• A latent variable has no inherent metric, 2 approaches:
 1. Constrain variance of latent variable to 1
 2. Constrain the factor loading of one item to 1

• (2) makes item the ‘reference item’, other loadings interpreted relative to reference item
 1. yields a standardised solution
 2. generally preferred (more flexible)
Mean Structures

• In conventional SEM, we do not model means of observed or latent variables

• Interest is in relationships between variables (correlations, directional paths)

• Sometimes, we are interested in means of latent variables
 e.g. Differences between groups
 e.g. Changes over time
Identification of latent means

• observed and latent means introduced by adding a constant

• This is a variable set to 1 for all cases

• The regression of a variable on a predictor and a constant, yields the intercept (mean) of that variable in the unstandardised b

• The mean of an observed variable = total effect of a constant on that variable
Mean Structures

\[b = \text{mean of } x \]

\[a + (b \times c) = \text{mean of } y \]
Means and identification

• Mean structure models require additional identification restrictions

• We are estimating more unknown parameters (the latent means)

• Where we have >1 group, we can fix the latent mean of one group to zero

• Means of remaining groups are estimated as differences from reference group
Formative and Reflective Indicators

- CFA assumes latent variable causes the indicators, arrows point from latent to indicator

- For some concepts this does not make sense

 e.g. using education, occupation and earnings to measure ‘socio-economic status’

- We wouldn’t think that manipulating an individual’s SES would change their education
Formative Indicators

• For these latent variables, we specify the indicators as ‘formative’

• This produces a weighted index of the observed indicators

• Latent variable has no disturbance term

• In the path diagram, the arrows point from indicator to latent variable
Item Parceling

- A researcher may have a very large number of indicators for a latent construct
- Here, model complexity can become a problem for estimation and interpretation
- Items are first combined in ‘parcels’ through summing scores over item sub-groups
- Assumes unidimensionality of items in a parcel
Higher Order Factors

• Usually, latent variables measured via observed indicators

• Can also specify ‘higher order’ latent variables which are measured by other latent variables

• Used to test more theories about the structure of multi-dimensional constructs
 e.g. intelligence, personality
Higher-order Factor Model
Summary

• Measuring concepts using latent variables
• Exploratory Factor Analysis (EFA)
• Confirmatory Factor Analysis (CFA)
• Fixing the scale of latent variables
• Mean structures
• Formative indicators
• Item parcelling
• Higher-order factors
For more information contact
crm.ac.uk